

Alvin Reji

Boston, MA | (516) 424 0863 | reji.alv@northeastern.edu | linkedin.com/in/alvin-reji

EDUCATION

Northeastern University , Boston, MA	Sep 2024 – Dec 2027
<i>Candidate for Bachelor of Science in Mechanical Engineering with an Aerospace Minor</i>	<i>GPA: 3.87</i>
Activities: AerospaceNU, ASME, Materials Engineering Research, TAMID, InterVarsity	
Relevant Courses: Statics, Mechanics of Materials, Dynamics, Propulsion, Mechanical Design, Thermodynamics, Fluid Mechanics	
University at Buffalo , Buffalo, NY	Aug 2023 – May 2024
Activities: University Nanosatellite Program, Solar Splash Electric Boat Racing, ASME	<i>GPA: 4.0</i>

SKILLS

Hardware: Microcontrollers, CNC Routing, 3D Printing, TIG Welding, Circuit Design, Soldering, Laser Cutting, Oscilloscope, ShopBot
Software: SolidWorks, Ansys, PrusaSlicer, MS Office, GSuite, Altium, MATLAB, AutoCAD, Python, C++, MATLAB, CAD, FEA, CFD
Interests: Rock climbing, Weightlifting, Volleyball, Spikeball, Cycling, Running, Hiking, Billiards, Photography, Videography, Pottery

EXPERIENCE

Massachusetts Institute of Technology	Cambridge, MA
<i>Teaching Assistant</i>	<i>Aug 2025 – Present</i>
<ul style="list-style-type: none">Educated 24 students on the iterative design process while introducing Six Sigma quality concepts to improve process reliabilityFostered a collaborative, inclusive classroom by coaching conflict resolution, and promoting effective decision-making strategies	
AerospaceNU CubeSAT at Northeastern University	Boston, MA
<i>Mechanical Engineer</i>	<i>Sep 2024 – Present</i>
<ul style="list-style-type: none">Designed optical component casings for 1U CubeSAT, ensuring structural integrity under launch and orbital conditions using FEAGenerated ASME Y14.5-compliant engineering drawings using GD&T principles for high tolerance fabrication and assemblyFabricated prototypes using FDM and SLA 3D printing, conducting F3 verification and risk analysis prior to final machining	
AerospaceNU Rocket Team at Northeastern University	Boston, MA
<i>Avionics Engineer</i>	<i>Sep 2024 – Present</i>
<ul style="list-style-type: none">Developed software for reliable sensor data acquisition on flight computers by implementing signal processing and noise reductionDesigned flight computer PCBs optimized for power distribution, EMI compliance, and thermal management using KiCAD	
Material Engineering Research at Northeastern University	Boston, MA
<i>Undergraduate Research Assistant</i>	<i>Sep 2024 – Present</i>
<ul style="list-style-type: none">Operated volumetric DIW 3D printers, achieving micron-level precision for fine-feature, hierachal microstructuresDesigned and fabricated 30+ experimental samples using photopolymer resins and polymers to assess material propertiesShowcased adhesive manufacturing research at Northeastern's RISE conference to industry experts among 300 presenters	
Solar Splash Electric Boat Racing at University at Buffalo	Buffalo, NY
<i>Electrical Engineering Subsystem Lead</i>	<i>Aug 2023 – May 2024</i>
<ul style="list-style-type: none">Led 7 engineers in designing and integrating an electric boat power system, achieving full NESC safety standard complianceDirected testing and troubleshooting, while mentoring team members on best practices to ensure reliable power system operationOptimized power system architecture, reducing overall cost by \$7,000 through component selection reviews and design analyses	

University Nanosatellite Program at University at Buffalo

<i>Guidance, Navigation, & Control Engineer</i>	Buffalo, NY
	<i>Aug 2023 – May 2024</i>
<ul style="list-style-type: none">Developed MATLAB simulations for satellite missions, modeling orbital mechanics, attitude dynamics, and control responsesImplemented Monte Carlo algorithms and Kalman filters to improve satellite state determination and reduce noise by 54%Authored interface control documents and led hardware trade studies on GN&C component viability for system integration	

PROJECTS

GE1501 Cornerstone of Engineering at Northeastern University	Boston, MA
<i>Horse Racing Tracking Collar</i>	<i>Oct 2024 – Dec 2024</i>
<ul style="list-style-type: none">Designed and fabricated an ESP32-based collar using SolidWorks and FDM 3D printing, ensuring sensor stability and durabilityImplemented GPS and accelerometer integration, enabling accurate horse position and motion tracking with ± 1 m positional errorDeveloped embedded C++ software for real-time Wi-Fi data transmission and data visualization through a custom PyQt5 GUI	
EAS199 UB Seminar Engineering Principles at University at Buffalo	Buffalo, NY
<i>Wind Turbine Project</i>	<i>Oct 2023 – Dec 2023</i>
<ul style="list-style-type: none">Engineered power-efficient wind turbines, optimizing performance and energy conversion through iterative prototypingAchieved top 10 placement among student teams for highest power output through innovative blade design and system efficiency	
NASA Techrise Student Challenge	Elmont, NY
<i>Atmospheric Measurement of Noxious Gases Using Sensors (AMONGUS)</i>	<i>Nov 2021 – July 2022</i>
<ul style="list-style-type: none">Conducted pre-launch testing in low-pressure chambers, improving payload reliability by 30% under high altitude conditionsFabricated and assembled payload components using CNC machining and laser cutting, ensuring structural integrity during flight	